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Abstract: We show how to exploit the encrypted key import functions of a variety of
different cryptographic devices to reveal the imported key. The attacks are padding oracle
attacks, where error messages resulting from incorrectly padded plaintexts are used as a
side channel. In the asymmetric encryption case, we modify and improve Bleichenbacher’s
attack on RSA PKCS#1v1.5 padding, giving new cryptanalysis that allows us to carry
out the ‘million message attack’ in a mean of 49 000 and median of 14 500 oracle calls
in the case of cracking an unknown valid ciphertext under a 1024 bit key (the original
algorithm takes a mean of 215 000 and a median of 163 000 in the same case). We show
how implementation details of certain devices admit an attack that requires only 9 400
operations on average (3 800 median). For the symmetric case, we adapt Vaudenay’s CBC
attack, which is already highly efficient. We demonstrate the vulnerabilities on a number
of commercially available cryptographic devices, including security tokens, smartcards and
the Estonian electronic ID card. The attacks are efficient enough to be practical: we give
timing details for all the devices found to be vulnerable, showing how our optimisations
make a qualitative difference to the practicality of the attack. We give mathematical
analysis of the effectiveness of the attacks, extensive empirical results, and a discussion of
countermeasures and manufacturer reaction.

Key-words: Chosen ciphertext attack, padding oracles, PKCS#11, HSMs, electronic
ID cards



Attaques Efficaces sur Appareils Cryptographiques
par Oracle de Padding

Résumé : Nous montrons comment exploiter l’interface de plusieurs appareils cryptographiques
pour extraire leurs clés cryptographiques. Nos attaques sont effectué par oracle de padding.

Mots-clés : Cartes à puces, Chosen ciphertext attack, padding oracles, PKCS#11, HSMs
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1 Introduction

Tamper-resistant cryptographic security devices such as smartcards, USB keys, and Hardware Security
Modules (HSMs) are an increasingly common component of distributed systems deployed in insecure
environments. Such a device must offer an API to the outside world that allows the keys stored
on the device to be used for cryptographic functions and permits key management operations, but
without compromising security. The most commonly used standard for designing cryptographic device
interfaces, RSA PKCS#11 [24], is known to have vulnerabilities if the attacker is assumed to have
access to the full API, and can therefore make attacks by combining commands in unexpected ways [4,
5,7]. In this paper, we describe a different way to attack keys stored on the device using only decryption
queries performed by a single function, usually the C UnwrapKey function for encrypted key import.
These attacks are cryptanalytic rather than purely logical, and hence require multiple command calls
to the interface, but the attacker only needs access to one seemingly innocuous command, subverting
the typical countermeasure of introducing access control policies permitting only limited access to the
interface.

We will show how the C UnwrapKey command from the PKCS#11 API is often implemented on
commercially available devices in such a way that it offers a ‘padding oracle’, i.e. a side channel allowing
him to see whether a decryption has succeeded or not. We give two varieties of the attack: the first for
when the imported key is encrypted under a public key using RSA PKCS#1 v1.5 padding, which is
still by far the most common and often the only available mechanism on the devices we obtained, and
the second for when the key is encrypted under a symmetric key using CBC and PKCS#5 padding.
The first attack is based on Bleichenbacher’s well-known attack [2]. Although commonly known as
the ‘million message attack’, in practice Bleichenbacher’s attack requires only about 215 000 oracle
calls on average against a 1024 bit modulus when the ciphertext under attack is known to be a valid
PKCS#1 v1.5 block. This is however not efficient enough to be practical on low power devices such as
smartcards which perform RSA operations rather slowly. We give a modified algorithm which results
in an attack which is 4 times faster on average than the original, with a median attack time over 10
times faster. We also show how the implementation details of some devices can be exploited to create
stronger oracles, where our algorithm requires only 9400 mean (3800 median) calls to the oracle. At
the heart of our techniques is a small but significant theorem that allows not just multiplication (as
in the original attack) but also division to be used to manipulate a PKCS#1 v1.5 ciphertext and
learn about the plaintext. In the second attack we use Vaudenay’s technique [26] which is already
highly efficient. Countermeasures to such chosen ciphertext attacks are well known: one should use
an encryption scheme proven to be secure against them. We discuss the availability of such modes in
current cryptographic hardware and examine what other countermeasures could be used while such
modes are still not available.

In summary, our contributions are the following: i) new results on PKCS#1 v1.5 cryptanalysis
that, when combined with the ‘parallel threads’ technique of Klima-Pokorny-Rosa [25] (which on its
own contributes a 38% improvement on mean and 52% on median) results in an improved version of
Bleichenbacher’s algorithm giving a fourfold (respectively tenfold) improvement in mean (respectively
median) attack time compared to the original algorithm (measured over 1000 runs with randomly
generated 1024 bit RSA keys and randomly generated conforming plaintexts); ii) demonstration of
the attacks on a variety of cryptographic hardware including USB security tokens, smartcards and
the Estonian electronic ID card, where we found various implementations of the oracle, and adapted
our algorithm to each one, resulting in attacks with as few as 9400 mean (3800 median) oracle calls
on the most vulnerable devices; iii) analysis of the complexity of the attacks, empirical data, and
manufacturer reaction.

In the next section, we describe the padding attacks relevant to this work and describe our modi-
fications to Bleichenbacher’s algorithm. The results on commercial devices are described in section 3.
We discuss countermeasures in section 4. Finally we conclude with a discussion of future work in
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section 5.

2 Padding Oracle Attacks

A padding oracle attack is a particular type of side channel attack where the attacker is assumed to
have access to an oracle which returns true just when a chosen ciphertext corresponds to a correctly
padded plaintext under a given scheme.

2.1 Bleichenbacher’s Attack

Bleichenbacher’s padding oracle attack, published in 1998, applies to RSA encryption with PKCS#1
v1.5 padding [2]. Let n, e be an RSA public key and d be the corresponding private key, i.e. n = pq
and ed ≡ 1 (mod φ(n)). Let k be the byte length of n, so 28(k−1) ≤ n < 28k. Suppose we want
to encrypt a plaintext block P where P is l bytes long. Under PKCS#1 v1.5 we first generate a
pseudorandom non-zero padding string PS which is k − 3 − l bytes long. We allow l to be at most
k − 11, so there will be at least 8 bytes of padding. The block for encryption is now created as

0x00, 0x02,PS , 0x00, P

We call a correctly padded plaintext and a ciphertext that encrypts a correctly padded plaintext
PKCS conforming or just conforming. For the attack, imagine, as above, that the attacker has access
to an oracle that tells him just when an encrypted block decrypts to give a conforming plaintext,
and assume he is trying to obtain the message m = cd mod n, where c is an arbitrary integer. He is
going to choose integers s, calculate c′ = c · se mod n and then send c′ to the padding oracle. If c′ is
conforming then he learns that the first two bytes of m ·s are 0x00, 0x02. Hence, if we let B = 28(k−2),
2B ≤ m · s mod n < 3B. The idea is to repeat the process for many values of s until only a single
plaintext is possible.

2.2 Improving the Bleichenbacher Attack

Let us first review in a little more detail the original attack algorithm. We are trying to obtain message
m = cd mod n from ciphertext c. In step 1 (Blinding), we search for a random integer value s0 such
that c(s0)

e mod n is conforming, by accessing the padding oracle. We let c0 = c(so)
e mod n and

m0 = (c0)
d mod n. Note that m0 = ms0 mod n. Thus, if we recover m0 we can compute the target

m as m0(s0)
−1 mod n. If the target ciphertext is already conforming, we can set s0 to 1 and skip this

step.
We let B = 28(k−2). If c0 is conforming, 2B ≤ m0 < 3B. Thus, we set the initial set M0 of possible

intervals for the plaintext as {[2B, 3B − 1]}. In step 2, we search for si such that c(si)
e mod n is

conforming. In step 3, we apply the si we found to narrow the set of possible intervals Mi containing
the value of the plaintext, and in step 4 we either compute the solution or jump back to step 2.

We are interested in improving step 2, i.e. the search for si. We give step 2 of the original algorithm
below, and omit the other steps (in the appendix we give our modified algorithm, of which step 1.a
equals step 1 of the original algorithm, whereas steps 3 and 4 are unchanged from the original).

Step 2a If i = 1 (i.e. we are searching for s1), search for the smallest positive integer s1 ≥ n/(3B)
such that c0(s1)

e mod n is conforming. It can be shown that smaller values of s1 never give a
conforming ciphertext.

Step 2b If i > 1 and |Mi−1| > 1, search for the smallest positive integer si > si−1 such that
c0(si)

e mod n is conforming.

RR n° 7944
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Step 2c If i > 1 and |Mi−1| = 1, i.e. Mi−1 = {[a, b]}, choose small ri, si such that

ri ≥ 2 bsi−1−2B
n and 2B+rin

b ≤ si < 3B+rin
a

until c0(si)
e mod n is conforming. Intuitively, the bounds for si derive from the fact that we want

c0(si)
e mod n conforming, i.e. 2B ≤ m0si − rin < 3B, for some ri, and from the assumption

a ≤ m0 ≤ b. As explained in the original paper, the constraint on ri aims at dividing the remaining
interval in half so to maximize search performance.

Some features of the algorithm’s behaviour were already known from the original paper. For
example, step 2a/b will in general be executed only very few times (in roughly 90% of our trials,
step 2b was executed a maximum of once, and in 32% of cases not at all). However, a lot of the
expected calls are here, since each time we just search näıvely for the next si, which takes an expected
1/Pr(P ) calls where Pr(P ) is the probability of a random ciphertext decrypting to give a conforming
block. Step 2c, meanwhile, is highly efficient, but is only applicable if there is only one interval left.
Furthermore it cannot be directly applied to the original interval {2B, 3B − 1} (since the bound on
ri, si collapses and we end up with the same search as in step 2a). Based on this observation, we
devised a new method for narrowing down the initial interval so that ‘step 2c-like’ reasoning could be
applied to speed up the search for s1.

Trimming M0 First observe that as well as multiplying the value of the decrypted plaintext (mod n)
by some integer s, we can also divide it by an integer t by multiplying the original ciphertext by
t−e mod n. Multiplication modulo n is a group operation on (Zn)∗, so inverses are unique. If the
original plaintext was divisible by t, the result m0 · t−1 mod n will just be m0/t, otherwise it will be
some other value in the group that we in general cannot predict without knowing m0. The following
holds.

Proposition 1. Let u and t be two coprime positive integers such that u < 3
2 t and t < 2n

9B . If m0 and
m0 · ut−1 mod n are PKCS conforming, then m0 is divisible by t.

Proof. We have m0u < m0
3
2 t < 3B 3

2 t < n. Thus, m0u mod n = m0u. Let x = m0 · ut−1 mod n. We
know x < 3B since it is conforming. Thus xt < 3Bt < n and xt mod n = xt. Now, xt = xt mod n =
m0u mod n = m0u which implies t divides m0.

By Proposition 1, if we find coprime positive integers u and t, u < 3
2 t and t < 2n

9B such that for
a PKCS conforming m0, m0 · ut−1 mod n is also conforming, then we know that m0 is divisible by t
and m0 · ut−1 mod n = m0

u
t . As a consequence

2B · t/u ≤ m0 < 3B · t/u.

Note that since we already know 2B ≤ m0 < 3B we can restrict our search to t and u such that
2/3 < u/t < 3/2. We apply this by constructing a list of suitable fractions u/t that we call ‘trimmers’.
In practice, we use a few thousand trimmers and take t ≤ 212 as the implementations typically satisfy
n ≥ 28k−1. For each trimmer u/t, we submit c0u

et−e to the padding oracle. If the oracle succeeds, we
can trim the bounds of M0.

A large denominator t allows for a more efficient trimming. The trimming process can be thus
optimised by taking successful trimming fractions u1/t1, . . . , un/tn, computing the lowest common
multiple t′ of t1, . . . , tn, using this value as a denominator and then searching for the highest and
lowest numerators uh, ul that imply a valid padding, giving 2B · t′/ul ≤ m < 3B · t′/uh.

RR n° 7944
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Skipping Holes In the original algorithm step 2a, the search for the first s1 starts at the value
dn/3Be. However, note that to be conforming we require in fact that m ·s ≥ n+2B. Since 3B−1 ≥ m
we get (3B − 1)s ≥ n + 2B. So we can start with s = d(n + 2B)/(3B − 1)e. On its own this does
not save us much: about 8000 queries depending on the exact value of the modulus. However, when
we have already applied the trimming rule above to reduce the upper bound on M0 to some b, this
translates immediately into a better start bound for s1 of (n+ 2B)/b.

Observe that in general for a successful s we must have 2B ≤ ms − jn < 3B for some natural
number j. Given that we have trimmed the first interval M0 to the range [a, b], this gives us a series
of bounds

2B + jn

b
≤ s < 3B + jn

a

Observe further that when
3B + jn

a
<

2B + (j + 1)n

b

we have a ‘hole’ of values where a suitable s cannot possibly be. When used in combination with the
trimming rule, we found that we frequently obtain a list of many such holes. We use this list to skip
out the holes during the search for the s1. Note that this is similar to the reasoning used to calculate
s values in step 2c, except that here we are concerned with finding the smallest possible s1 in order to
have the fewest possible intervals remaining when searching for s2. As we show in the results below,
the combination of the trimming and hole skipping techniques is highly effective, in particular against
more permissive oracles than a strict PKCS padding oracle.

2.3 Existing Optimisations

In addition to our original modifications, we also implemented changes proposed by Klima, Pokorny
and Rosa (KPR) [25]. These are mainly aimed at improving performance in step 2b, because they
were concerned with attacking a weaker oracle where most time was spent in step 2b (see below).
They are therefore naturally complementary to our optimisation of step 2a.

Parallel thread method The parallel thread method consists of omitting step 2b in the case where
there are several intervals in Mi−1, and instead forking a separate thread for each interval and using
the method of step 2c to search for si. As soon as one thread finds a hit, all threads are halted and
the new intervals are calculated. If there is still more than one interval remaining, new threads are
launched. In practice, since access to the oracle may not be parallelisable, the actions of each thread
can be executed stepwise. This heuristic is quite powerful in practice, as we will see below.

Tighter bounds and Beta Method KPR were concerned with attacking the weaker ‘bad version’
oracle found in implementations of SSL patched against the original vulnerability. This meant that
when the oracle succeeds, they could be sure of the length of the unpadded plaintext, since it must
be the right length for the SSL ‘pre-master secret’. This allowed them to tighten the 2B and 3B − 1
bounds. We also implemented this optimisation where possible, since it has no significant cost, but its
effects are not significant. We implemented a further proposal of KPR, the so-called ‘Beta Method’
that we do not have space to describe here(see appendix A), but again found that it caused little
improvement in practice.

2.4 Stronger and Weaker Oracles

In order to capture behaviour found in real devices (see section 3), we define stronger and weaker
Bleichenbacher oracles, i.e. oracles which return true for a greater or smaller proportion of values x
such that 2B ≤ x < 3B. We characterise them by three Booleans specifying the tests they apply or

RR n° 7944
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skip on the decrypted plaintext. The first Boolean corresponds to the test for a 0 somewhere after the
first ten bytes. The second Boolean corresponds to the check for 0s in the non-zero padding. The third
Boolean corresponds to a check of the plaintext length against some specific value (e.g. 16 bytes for an
encrypted AES-128 key). More precisely, we say an oracle is FFF if it returns true only on correctly
padded plaintexts of a specific fixed length, like the the KPR ‘bad version’ oracle found in some old
versions of SSL. An oracle is FFT if it returns true on a correctly padded plaintext of any length.
This is the standard PKCS oracle used by Bleichenbacher. An oracle is FTT if it returns true on a
correctly padded plaintext of any length and additionally on an otherwise correctly padded plaintext
containing a zero in the eight byte padding. An oracle is TFT if if returns true on a correctly padded
plaintext of any length and on plaintexts containing no 0s after the first byte. The most permissive
oracle, TTT, returns true on any plaintext starting with 0x00, 0x02. We will see in the next section
how all these oracles arise in practice.

In Table 1, we show performance of the standard Bleichenbacher algorithm on these oracles, apart
from FFF for which it is far too slow to obtain meaningful statistics. Attacking the strongest oracles
TTT and TFT is substantially easier than the standard oracle. We can explain this by observing that
for the original oracle, on a 1024 bit block, the probability Pr(P ) of a random ciphertext decrypting
to give a conforming block is equal to the probability that the first two blocks are 0x00, 0x02, the
next 8 bytes are non-zero, and there is a zero somewhere after that. We let Pr(A) be the probability
that the first two bytes are 0x00, 0x02, i.e Pr(A) ≈ 2−16. We identify Pr(P |A), the probability of a
ciphertext giving a valid plaintext provided the first two bytes are 0x00, 0x02, i.e(

255

256

)8

.

(
1−

(
255

256

)118
)
≈ 0.358

Pr(P ) is therefore 0.358 · 2−16. Bleichenbacher estimates that, if no blinding phase is required, the
attack on a 128 byte plaintext will take

2/Pr(P ) + 16 · 128/Pr(P |A)

oracle calls. So we have
(2 · 216 + 16 · 128)/Pr(P |A) = 371843

In the case of, say, the TTT oracle, Pr(P |A) is 1, since any block starting 0x00, 0x02 will be accepted.
Hence we have

217 + 16 · 128 = 133120

oracle queries. This is higher than what we were able to achieve in practice in both cases, but the
discrepancy is not surprising since the analysis Bleichenbacher uses is a heuristic approximation of the
upper bound rather than the mean. However, it gives an explanation of why the powerful oracle gives
such a big improvement in run times: improvements in the oracle to Pr(P |A) make a multiplicative
difference to the run time. Additionally, the expected number of intervals at the end of step 2a is
ds1 ·B/ne [2, p. 7], so if s1 is less than 216, the expected number of intervals is one. For the FFT oracle,
the expected value of s1 (calculated as 1/2 · 1/Pr(P )) is about 91 500, between 216 and 217, whereas
for TTT it is 215. That means that in the TTT case we can often jump step 2b and go straight to
step 2c, giving a total of

216 + 16 · 128 = 34816

i.e. the TTT oracle is about 10 times more powerful than the FFT oracle, which is fairly close to what
we see in practice (our mean for FFT is about 5.5 times that for TTT).

In comparison, if the modulus is 2048 bit long, then Pr(P |A) ≈ 0.599. Because the modulus is
longer, the probability that 0x00 appears after the 8 non-zero bytes is higher than in the 1024 bit case.
Furthermore, following the same argument as above, we obtain that the attack on a 2048 bit plaintext
will take about 335 065 calls to the FFT oracle, fewer than in the 1024 bit case. Note however that
RSA private key operations slow down by roughly a factor of four when key length is doubled.

RR n° 7944
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Oracle Original algorithm Modified algorithm
Mean Median Mean Median Trimmers Mean skipped

FFF - - 18 040 221 12 525 835 50 000 7 321

FFT 215 982 163 183 49 001 14 501 1 500 65 944

FTT 159 334 111 984 39 649 11 276 2 000 61 552

TFT 39 536 24 926 10 295 4 014 600 20 192

TTT 38 625 22 641 9 374 3 768 500 18 467

Table 1: Performance of the original and modified algorithms.

0 00000538136110541

Figure 1: Graph comparing distribution of oracle calls for original (lower peak, thinner line) and
optimised version of the algorithm on the FFT oracle. Median is marked for each.

2.5 Performance of the Modified Algorithm

Referring again to Table 1, we give a summary of our experiments with our modified algorithm. As
well as mean and median, we give the number of trimming fractions tried and the average number
of oracle calls saved by the hole skipping modification we presented in section 2.2. Observe that
as the oracles become stronger, the contribution of the KPR ‘parallel threads’ method becomes less
significant and our hole skipping technique more significant. This is to be expected, since as discussed
above, for the stronger oracles, fewer runs need to use step 2b. Similarly, when trimming the first
interval M0, we find that more fractions can be used because of the more permissive oracle, hence we
find more holes to skip. For the most restrictive oracle, FFF, the addition of our trimming method
slightly improves on the results of KPR (which were 20 835 297 mean and 13 331 256 median). Note
also that the trimming technique contributes more than just the oracle calls saved by the hole skipping,
it also slightly improves performance on all subsequent stages of the algorithm. We know this because
we can compare performance using only the parallel threads optimisation, where we obtain a mean
of 113 667 and a median of 78 674 (on the FFT oracle). In Figure 1, we give the density distribution
for 1000 runs of the original algorithm and our optimised algorithm on the classical FFT oracle, with
medians marked. Notice the change in shape: we have a much thinner tail.

2.6 Vaudenay’s Attack

Vaudenay’s attack on CBC mode symmetric-key encryption [26] is somewhat simpler and highly
efficient. Recall first the operation of CBC mode [8]: given some block cipher with encryption,
decryption functions E(.), D(.) and a fixed block size of b bytes, suppose we want to encrypt a message
P of length l = j · b for some integer j, i.e. P = P1, . . . , Pj . In CBC mode, we first choose a fresh
initialisation vector IV . The first encrypted block is defined as C1 = E(IV ⊕ P1), and subsequent
blocks as Ci = E(Ci−1 ⊕ Pi). The need for padding arises because l is not always a multiple of b.
Suppose l = j · b + r. Then we need to encrypt the last r bytes of the message in a b bytes block in
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Device PKCS#11 PKCS#1 v1.5 Attack CBC-PAD Attack
version Token Session Token Session

Aladdin eTokenPro 2.01 X X X X
Feitian ePass 2000 2.11 × × N/A N/A
Feitian ePass 3003 2.20 × × N/A N/A
Gemalto Cyberflex 2.01 X N/A N/A N/A
RSA Securid 800 2.20 X N/A N/A N/A
Safenet Ikey 2032 2.01 X X N/A N/A
SATA DKey 2.11 × × × ×
Siemens CardOS 2.11 X X N/A N/A

Table 2: Attack Results on Tokens

such a way that on decryption, we can recognise that only the first r bytes are to be considered part
of the plaintext. One way to do this is the so-called RC5 padding, also known as PKCS padding and
described in RFC 5652 [11]. The r bytes are encoded into the leftmost bytes of the final block, and
then the final b− r bytes are filled with the value b− r. Under this padding scheme, if the plaintext
length should happen to be an exact multiple of the block size, then we add a whole block of padding
bytes b.

To effect Vaudenay’s attack, suppose that the attacker has some ciphertext C1, . . . , Cn and access
to an oracle that returns true just when a ciphertext decrypts with valid padding. To attack a given
block Ci, we first prepend a random block R = r1, . . . , rb. We then ask the padding oracle to decrypt
R | Ci. If the padding is valid most probably the final byte is 1, hence the final byte pm of the plaintext
Pi satisfies pb = rb⊕1. If the padding is not accepted, we iterate over i setting r′b = rb⊕ i and retrying
the oracle until eventually it is accepted. There is a small chance that the final byte of an accepted
block is not 1, but this is easily detected. Having discovered the last byte, it is easy to extend the
attack to obtain pb−1 by tweaking rb−1, and so on for the whole block. Given this ‘block decryption
oracle’ we can then apply it to all the blocks of the message. Overall, the attack requires O(nb) steps,
and hence is highly efficient.

Since the original attack appeared, many variations have been found on other padding schemes
and block cipher modes [1, 6, 13, 16, 19, 21]. Bond and French recently showed that the attack could
be applied to the C UnwrapKey command as implemented on a hardware security module (HSM) [3].
We will show in the next section that many cryptographic devices are indeed vulnerable to variants
of the attack.

3 Attacking Real Devices

We applied the optimised versions of the attacks of Bleichenbacher and Vaudenay presented in section
2 to the unwrap functionality of PKCS#11 devices. RSA PKCS#11, which describes the ‘Cryptoki’
API for cryptographic hardware, was first published in 1995 (v1.0). The latest official version is v2.20
(2004) which runs to just under 400 pages [24]. Adoption of the standard is almost ubiquitous in
commercial cryptographic tokens and smartcards, even if other additional interfaces are frequently
offered. In a PKCS#11-based API, applications initiate a session with the cryptographic token, by
supplying a PIN. Once a session is initiated, the application may access the objects stored on the token,
such as keys and certificates. Objects are referenced in the API via handles, which can be thought of
as pointers to or names for the objects. In general, the value of the handle, e.g. for a secret key, does
not reveal any information about the actual value of the key. Objects have attributes, which may be
bitstrings e.g. the value of a key, or Boolean flags signalling properties of the object, e.g. whether the
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key may be used for encryption (CKA ENCRYPT1), or for encrypting other keys, for signing, verification,
and other uses. New objects can be created by calling a key generation command, or by unwrapping
an encrypted key packet using the C UnwrapKey command, which takes a handle, a ciphertext and a
template as input. A template is a partial description of the key to be imported, giving notably its
length. The device attempts to decrypt the ciphertext using the key referred to by the handle. If
it succeeds, it creates a new key on the device using the extracted plaintext and the template, and
returns a new handle.

Observe that a padding check immediately following the decryption could give rise to an oracle that
may be used to determine the value of the newly stored key. To test for such an oracle on a device, we
create a key with the CKA UNWRAP attribute set to allow the C UnwrapKey operation, create encrypted
key packets with deliberately placed padding errors, call the function on these ciphertexts and observe
the return codes. For the case of asymmetric key unwrapping, constructing test ciphertexts is easy
since the public key of the pair is always obtainable via a query to the PKCS#11 interface. For
symmetric key unwrapping, it is not quite so trivial since the device may create unwrapping keys
marked with the Boolean key attribute CKA SENSITIVE which prevents them from being read via
the PKCS#11 interface. In this case there are various tricks we can use: we can try to set the
attribute CKA ENCRYPT and then use the PKCS#11 function C Encrypt to construct the test packets
if a suitable mode is available, or if the device does not allows this, we can explicitly try to create a
key with CKA SENSITIVE set to false, assuming the same unwrap algorithm will be used as for sensitive
keys. In the event, we were always able to find some way to do this with the devices under test.

3.1 Smartcards and Security Tokens

In Table 2 we give results from implementing the attacks on all the commercially available smartcards
and USB tokens we were able to obtain that offer a PKCS#11 interface and support the unwrap
operation. A tick means not only that we were able to construct a padding oracle, but that we were
actually able to execute the attack and extract the correct encrypted key. A cross notes that the attack
fails. We explain these failures below. Not applicable (N/A) means that the token did not support
the cryptographic mechanisms and/or unwrap modes required for this attack. Note that relatively
few devices support unwrap under symmetric key algorithms. We tested the attacks using both token
keys and session keys for the unwrapping. The exact semantics of the difference between these key
types is not completely clear from the standard: there is an attribute CKA TOKEN which when set to
true indicates a token key and when false indicates a session key. Session keys are destroyed when the
session is ended, whereas token keys persist. However, we have noticed that devices often enforce very
different policies for token keys and session keys, so it seemed pertinent to test both types.

In Table 3 we give the class of padding oracle found in each device in the PKCS#1 v1.5 case.
To obtain this table we construct padded plaintexts with a single padding error and observed the
return code from the token (the exact return codes are in the appendix, Table 4). Note that we give
separate entries for token and session keys in this table only when there is a difference in the device’s
behaviour in the two cases. We report median attack time, computed from the results of table 1 and
from a measure of the unwrap rate of the hardware. Notice how the tenfold improvement in median
attack time of our modified algorithm makes attacks even against FFT oracles on slow devices quite
practical. Unwrap calls using session keys are often many times faster than token keys though it is not
clear why, unless perhaps these devices are carrying out session key operations in the driver software
rather than on the card.

We will briefly discuss each line of Table 2 in turn. The Aladdin eToken Pro supports both
unwrapping modes required, though the CBC PAD unwrap mode does not conform to the standard: a

1Throughout the paper we will refer to commands, attributes, return codes and mechanisms by their names as
defined in the PKCS#11 standard, so C prefixes a (cryptoki) command, CKA prefixes a cryptoki attribute, CKR prefixes
a cryptoki return code and CKM prefixes a cryptoki mechanism.
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Device Token Session
Oracle Time Oracle Time

Aladdin eTokenPro FTT 21m FTT 17m
Gemalto Cyberflex FFT 92m N/A N/A
RSA Securid 800 TTT 13m N/A N/A
Safenet Ikey 2032 FTT 88m FTT 17m
Siemens CardOS TTT 21m FFT 89s

Table 3: Oracle Details and Median Attack Times

block containing a final byte of 0x00 is accepted. According to the standard, if the final byte of the
plaintext is zero and it falls at the end of a block, then an entire block of padding should be added
(see section 2). This causes a small problem for the attack since it gives us an extra possibility for
the last byte, but we easily adapted the attack to take account of this. The PKCS#1 v1.5 padding
implementation ignores zeros in the first 8 bytes of the padding and gives a separate error when the
length of the extracted key does not match the requested one (CKR TEMPLATE INCONSISTENT). Based
on this we can build an FTT oracle. The Feitian tokens do not support CBC PAD modes. They also
do not implement PKCS#1 v1.5 padding correctly as shown in Table 4: in our tests, any block with
0x02 in the second byte was accepted, except for very large values (e.g. for one key, anything between
0x00 and 0xE2 in the first byte was accepted). The result is that the attack does not succeed. The
Gemalto Cyberflex smartcard does not allow unwrapping under symmetric keys. However, it seems
to implement standard PKCS#1 v1.5 padding correctly, and the Bleichenbacher attack succeeds (FFT
oracle, since the length is ignored). The RSA SecurID device does not support unwrapping using
symmetric keys, hence the Vaudenay attack is not possible. However, the Bleichenbacher attack works
perfectly. In fact, the RSA token implements a perfect TTT oracle. The device also supports OAEP,
but not in a way that prevents the attack (see next paragraph). The Safenet ikey2032 implements
an asymmetric key unwrapping. The padding oracle derived is more accepting than the Bleichenbacher
oracle since the 0s in the first 8 bytes of the padding string are ignored (FTT oracle). The SATA
DKey does not implement standard padding checks. In CBC PAD mode, only the last byte is checked:
it seems that as long as the last byte n is less than the number of bytes in a block, the padding is
accepted and the final n bytes discarded. This means we cannot use the attack to recover the whole
key, just the final byte. In PKCS#1 v1.5 mode, many incorrectly padded blocks were accepted, and
we were unable to deduce the rationale. For example, any block with the first byte equal to 0x02 is
accepted. The wide range of accepted blocks prevents the attack. The Siemens CardOS supports
only unwrapping under asymmetric keys. The Bleichenbacher attack works perfectly: with token keys
the oracle is TTT, while with session keys it is FFT.

Attacking OAEP Mode Unwrapping A solution to the Bleichenbacher attack is to use OAEP
mode encryption, which was first added to PKCS#1 in v2.0 (1998) and is recommended for all new
applications since v2.1 (2002). RSA OAEP was included as a mechanism in PKCS#11 in version 2.10
(1999). However, out of the tokens tested (all of which are currently available products), only one, the
RSA SecureID, supports OAEP encryption. The standard PKCS#1 v2.1 notes that it is dangerous
to allow two mechanisms to be enabled on the same key [23, p. 14], since “an opponent might be able
to exploit a weakness in the implementation of RSAES-PKCS1-v1 5 to recover messages encrypted
with either scheme.”. An examination of the developer’s manual for the RSA SecurID reveals that for
private keys generated by the token, the relevant attribute “CKA ALLOWED MECHANISMS is always set to
the following mechanism list : CKM RSA PKCS, CKM RSA PKCS OAEP, and CKM RSA X 509.”. We created
a key wrapped under OAEP and then performed Bleichenbacher’s attack on it using a PKCS#1 v1.5
unwrap oracle. The attack is only slightly complicated by the fact that the initial encrypted block
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does not yield a valid block when decrypted, requiring us to use the ‘blinding phase’ where many
ciphertexts are derived form the original to obtain one that passes the padding oracle. In our tests
this added only a few hundred seconds to the attack.

3.2 HSMs

Hardware Security Modules are widely used in banking and similar sectors where a large amount
of cryptographic processing has to be done securely at high speed (verifying PIN numbers, signing
transactions, etc.). A typical HSM retails for around 20 000 Euros hence is unfortunately too expensive
for our laboratory budget. HSMs process RSA operations at considerable speed: over 1000 decryptions
per second for 1024 bit keys. Even in the case of the FFF oracle, which requires 12 000 000 queries,
this would result in a median attack time of 12 000 seconds, or just over three hours.

We hope to be able to give details of HSM testing soon.

3.3 Estonian ID Card

Estonia’s Citizenship and Migration Board completed the issuing of more than 1 million national
electronic ID (eID) cards in 2006 [15]. The eID is the primary national identification document in
Estonia and it is mandatory for all Estonian citizens and alien residents 15 years and older to have
one [9]. The card contains two RSA key pairs [12]. One key pair is intended to be mainly used for
authentication (e.g., for mutual authentication with TLS/SSL) but can also be used for encrypting
and signing email (e.g., with S/MIME). The other key pair is attributed only to be used for digital
signatures. Only this latter key pair can be used for legally binding digital signatures [15]. Since
January 1, 2011, the eID cards contain 2048 bit RSA keys, therefore these cards comply with NIST’s
recommendation [17]. However, cards issued before January 1, 2011 continue to use 1024 bit keys.

Attack Vector Unlike the cryptographic devices discussed above, the Estonian eID card does not
allow the import of keys, so our attack here does not rely on the unwrap operation. Instead we consider
attacks using the padding oracle provided by the decryption function of the DigiDoc software, part
of the official ID software package developed by the Estonian Certification Center, Estonia’s only
CA [10]. We note that the attack succeeds with any application that returns whether decryption
with the eID card succeeds. Our experiments were conducted using the Java library of DigiDoc,
called JDigiDoc. DigiDoc encrypts data using a hybrid encryption scheme, where a 128-bit AES key
is encrypted under a public key. First we tested the Estonian ID card’s decryption function using
raw PKCS#11 calls and confirmed that it checks padding correctly. We then observed that with the
default configuration, when attempting to decrypt, e.g., an encrypted email, JDigiDoc writes a log file
of debug information that includes the padding errors for the 128-bit AES key that is encrypted under
the public key. This behavior has been observed with JDigiDoc version 2.3.19, and the latest version
(3.6.0.157) does not seem to change it. Any application built on JDigiDoc, that reveals whether
decryption succeeds, e.g., by leaking the contents of the log file, provides an attacker with a suitable
padding oracle. The information in JDigiDoc’s log file gives an attacker access to essentially an FFT
oracle but with additional length information. The length information allows us to adjust the 2B and
3B − 1 bounds used in the attack, though in our experiments this made little difference.

In tests, the Estonian ID card, using 2048 bit keys, was able to perform 100 decryptions in 340
seconds. This means that for our optimised attack, where 28 300 decryptions are required, we would
need about 96 200 seconds, or about 27 hours to decrypt an arbitrary valid ciphertext. For ID cards
using 1024 bit keys, each decryption should be four times faster, while 49 000 decryptions are required;
therefore we estimate a time of about 41 700 seconds, or about 11 hours and 30 minutes to decrypt an
arbitrary valid ciphertext. To forge a signature, we require, due to the extra blinding step, a mean
of 109 000 oracle calls and a median of 69 000 oracle calls to get a valid signature on an arbitrary
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message, giving an expected time of 103 hours on a 2048 bit Estonian eID. On a card using 1024 bit
keys, we require a mean of 203 000 calls and a median of 126 000 calls; therefore expect to sign an
arbitrary message in around 48 hours.

4 Countermeasures

A general countermeasure to the Bleichenbacher and Vaudenay attacks has been well known for years:
use authenticated encryption. There are no such modes for symmetric key encryption in the current
version of PKCS#11, but version 2.30, which is still at the draft stage, includes GCM and CCM
(mechanisms CKM AES GCM and CKM AES CCM). While these modes have their critics [22], they do in
theory provide secure authenticated encryption and hence could form the basis of secure symmetric
key unwrap mechanisms. Unfortunately, in the current draft (v7), they are given only as modes for
C Encrypt. Adoption of these modes for C UnwrapKey would provide a great opportunity to give
the option of specifying authenticated data along with the encrypted key to allow secure transfer
of attributes between devices. This would greatly enhance the flexibility of secure configurations
of PKCS#11. To prevent the Bleichenbacher attack one must simply switch to OAEP, which is
already in the standard. PKCS#11 should follow PKCS#1’s long-held position of recommending
OAEP exclusively for all new applications. Care must also be taken to remind developers not to allow
the two modes to be used on the same key, as is the case in RSA’s own SecureID device. In fact,
the minutes of the 2003 PKCS workshop suggest that there was a consensus to include the single
mechanism recommendation in version 2.20 [20], but it does not appear in the final draft. Note that
care must be taken when implementing OAEP as otherwise there may also be a padding oracle attack
which is even more efficient than our modified Bleichenbacher attack [14], though we are yet to find
such an oracle on a PKCS#11 device.

If unauthenticated unwrap modes need to be maintained for backwards compatibility reasons,
there are various options available. For the CBC case, Black and Urtubia note that the 10∗ padding,
where the plaintext is followed by a single 1 bit and then only 0 bits until the end of the block, leaks
no information from failed padding checks while still allowing length of the plaintext to be determined
unambiguously [1]. Paterson and Watson suggest a refinement that additionally preserves a notion of
indistinguishability, by ensuring that no padded blocks are invalid [18]. They also give appropriate
security proofs for the two schemes. If PKCS#1 v1.5 needs to be maintained, we have seen that
an implementation of the padding check that rejects anything other than a conforming plaintext
containing a key of the correct length with a single error code gives the weakest possible (FFF) oracle.
This may be enough for some applications, but one is well advised to remember the maxim that attacks
only get better, never worse. An alternative approach would be to adopt ‘SSL style’ countermeasures,
proceeding to import a randomly generated key in the case where a block contains invalid padding.
However, this may not fix the hole: if an attacker is able to replay the same block and detect that two
different keys have been imported, he knows there is a padding error. One could also decide to ignore
padding errors completely and always import just the number of bytes corresponding to the size of
the key required, but this looks dangerous: if the same block can be passed off as several different
kinds of key, this might open the possibility of attacking weaker algorithms to obtain keys for stronger
ones. Thus it seems clear that authenticated encryption is by far the superior solution.

We detail manufacturer responses in Appendix C. There is a broad spectrum: while some man-
ufacturers offer mitigations and state a clear need to get authenticated encryption into the standard
and adopted as soon as possible, others see their responsibility as ending as soon as they conform to
the PKCS#11 standard, however vulnerable it might be.
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5 Conclusions

We have demonstrated a modified version of the Bleichenbacher RSA PKCS#1 v1.5 attack that allows
the ‘million message attack’ to be carried out in a few tens of thousands of messages in many cases.
We have implemented and tested this and the Vaudenay CBC attack on a variety of contemporary
cryptographic hardware, enabling us to determine the value of encrypted keys under import. We
have shown that the way the C UnwrapKey command from the PKCS#11 standard is implemented
on many devices gives rise to an especially powerful error oracle that further reduces the complexity
of the Bleichenbacher attack. In the worst case, we found devices for which our algorithm requires
a median of only 3 800 oracle calls to determine the value of the imported key. Vulnerable devices
include eID cards, smartcards and USB tokens.

While some theoreticians find the lack of a security proof sufficient grounds for rejecting a scheme,
some practitioners find the absence of practical attacks sufficient grounds for continuing to use it. We
hope that the new results with our modified algorithm will prompt editors to reconsider the inclusion
of PKCS#1 v1.5 in contemporary standards such as PKCS#11.
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A Modified Bleichenbacher Algorithm

We present the algorithm of the optimised Bleichenbacher attack. It incorporates existing and new
optimisations as presented in section 2.2. Notation is as before.
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Step 1 - Initialization

Step 1.a - Blinding For an integer c, choose different random integers s0 and check whether
c · (s0)e mod n is PKCS conforming, by accessing the padding oracle. (If c mod n is conforming then
choose s0 ← 1 instead.) For the first successful value s0, set c0 ← c ·(s0)e mod n, M0 ← {[2B, 3B−1]},
i← 1.

Step 1.b - Trimming M0 Generate pairs of coprime integers and, for each pair (u, t), check whether
c0u

et−e mod n is PKCS conforming. For successful pairs (u1, t1), (u2, t2), . . . , (uq, tq), compute the
lowest common multiple t′ of t1, t2, . . . , tq, search for the smallest integer umin and the largest integer
umax such that c0u

e
mint

′−e mod n and c0u
e
maxt

′−e mod n are PKCS conforming. Set

a← 2B · t′/umin

b← (3B − 1) · t′/umax

M0 ← {[a, b]}.

Step 2 - Searching for PKCS conforming message

Step 2.a - Starting the search while Skipping Holes If i = 1, then search for the smallest
positive integer s1 ≥ d(n + 2B)/be such that c0 · se1 mod n is PKCS conforming. While searching for
s1, skip all values s′ such that

(3B + jn)/a ≤ s′ < (2B + (j + 1)n)/b

and do not access the padding oracle to check whether c0 · s′e mod n is PKCS conforming.

Step 2.b - Searching with more than one interval left If i > 1 and |Mi−1| > 1, then

Step 2.b.i - Parallel Threads Method If |Mi−1| ≤ Pmax
2, then for each interval Ij ∈Mi−1, start

its own thread Tj following Step 2.c, for j = 1, 2, . . . , |Mi−1|. The threads Tj take rounds making each
one oracle call per round. If one of the threads finds a si such that c0 · sei mod n is PKCS conforming,
then go to Step 3.

Step 2.b.ii - Beta Method 3 If |Mi−1| > Pmax, then search for the smallest integer 2 ≤ β ≤ βmax
4

such that for
si ← βsi−1 − (β − 1)s0

c0 · sei mod n is PKCS conforming. If failed to find si, go to Step 2.b.iii.

Step 2.b.iii - No optimisation If Step 2.b.ii failed, then search for the smallest integer si > si−1
such that c0 · sei mod n is PKCS conforming. If such a si is found, go to Step 3.

Step 2.c - Searching with one interval left If i > 1 and |Mi−1| = 1, i.e., Mi−1 = {[a, b]}, then
choose small integers ri, si such that

ri ≥ 2 bsi−1−2B
n

2B+rin
b ≤ si < 3B+rin

a

until c0 · sei mod n is PKCS conforming.

2In practice we take Pmax = 40.
3We did not use beta method for most experiments. (See section 2.5.)
4In practice we take βmax = 40.
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Step 3 - Narrowing the set of solutions After si is found, let

Mi ←
⋃

(a,b,r)

{[
max

(
a,
⌈2B + rn

si

⌉)
,min

(
b,
⌊3B − 1 + rn

si

⌋)]}
for all [a, b] ∈Mi−1 and asi−3B+1

n ≤ r ≤ bsi−2B
n .

Step 4 - Computing Solution If Mi = [a, a], then set m ← a(s0)
−1 mod n, and return m as

solution of m ≡ cd mod n. Otherwise, set i← i+ 1 and continue with Step 2.b or Step 2.c.

B Actual Padding Errors Reported by Smartcards and USB Tokens

Table 4 reports actual padding errors returned by the devices we tested.

Device First byte Second byte 0x00 in first No 0x00 from Length
not 0x00 not 0x02 8 bytes padding byte 3 to 128 incorrect

Aladdin eToken PRO 1 1 4 1 4
Feitian epass 2000 0 5 5 5 0
Feitian epass 3003 0 3 5 5 5
Gemalto Cyberflex 2 2 2 2 0
RSA SecureID 800 1 1 0 0 0
Safenet Ikey 2032 1 1 4 1 4
SATA Dkey (session) 1 0 5 5 1
SATA Dkey (token) 1 1 5 5 1
Siemens CardOS (session) 5 5 5 5 0
Siemens CardOS (token) 5 5 0 0 5

Table 4: Variations found on PKCS#1 v1.5 Padding Tests. Error 0 = CKR OK (key is im-
ported), Error 1 = CKR ENCYRYPTED DATA INVALID, Error 2 = CKR WRAPPED KEY INVALID, Error 3
= CKR DATA LEN RANGE, Error 4= CKR TEMPLATE INCONSISTENT, Error 5 = CKR FUNCTION FAILED,
CKR GENERAL ERROR, CKR DEVICE ERROR or similar.

C Manufacturer Reaction

We have notified all manufacturers of our findings and we summarize their reactions so far.
SafeNet is planning to release a security bulletin where they confirm the vulnerability on eToken

Pro, eToken Pro Smartcard, eToken NG-OTP, eToken NG-FLASH, iKey 2032 using Aladdin eToken
PKI Client or SafeNet Authentication Client software. As a workaround they suggest to use SafeNet
Authentication Client 8.0 or later to enable PKCS#1 v2.1 padding for RSA and to avoid wrapping
symmetric keys using other symmetric keys. They plan enhancements in their products for enabling
symmetric keys wrapping with other symmetric keys using GCM and CCM modes of operation (dis-
cussed in section 4). They also plan to add a key wrapping policy that enforces the usage of only
GCM and CCM modes of operation for symmetric encryption, and PKCS#1 v2.1 padding for RSA
encryption.

RSA recognises that an attacker can obtain the corresponding plaintext through a padding oracle
attack against RSA SecureID faster than would be possible with standard Bleichenbacher attack.
They however claim that “this attack is unnecessary since the prerequisites to the attack are already
enough to call C UnwrapKey and C GetAttributeValue and receive the same plaintext”. Instead,
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they regard these flaws as incomplete compliance with the standard and they are planning to fix
this. Our perspective is that (1) full compliance with the standard would only slow down the attacks
and not prevent them; (2) the attacker could have indirect attacks to the unwrapping functionality
without accessing other functionalities such as C GetAttributeValue and without knowing the PIN,
e.g. though a network protocol

Siemens has also recognised the flaws and we have been informally told that they have fixed the
verification of the padding and added a check of the obtained plaintext with respect to the given key
template in the most recent version.

We filed a vulnerability report of our attack on the Estonian eID card to the Estonian Certification
Center. They showed concern about the vulnerability of the card we reported and informed CERT
Estonia about the flaw. However, according to the Estonian Certification Center the authentication
certificate is mainly used for authentication with SSL (in 95% of the cases), and our attack would be
too slow to forge an SSL client response before a server timeout. At the time of our communication
they had not decided on any countermeasures. The most recent release (v3.6.0.157) of digiDoc does
not change the default output to the debug file.
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