Initial version

This commit is contained in:
Yorick Barbanneau 2021-10-11 22:27:00 +02:00
commit 6f405265a5
102 changed files with 14486 additions and 0 deletions

294
code/userprog/addrspace.cc Normal file
View file

@ -0,0 +1,294 @@
// addrspace.cc
// Routines to manage address spaces (executing user programs).
//
// In order to run a user program, you must:
//
// 1. link with the -N -T 0 option
// 2. run coff2noff to convert the object file to Nachos format
// (Nachos object code format is essentially just a simpler
// version of the UNIX executable object code format)
// 3. load the NOFF file into the Nachos file system
// (if you haven't implemented the file system yet, you
// don't need to do this last step)
//
// Copyright (c) 1992-1993 The Regents of the University of California.
// All rights reserved. See copyright.h for copyright notice and limitation
// of liability and disclaimer of warranty provisions.
#include "copyright.h"
#include "system.h"
#include "addrspace.h"
#include "noff.h"
#include "syscall.h"
#include "new"
//----------------------------------------------------------------------
// SwapHeader
// Do little endian to big endian conversion on the bytes in the
// object file header, in case the file was generated on a little
// endian machine, and we're now running on a big endian machine.
//----------------------------------------------------------------------
static void
SwapHeader (NoffHeader * noffH)
{
noffH->noffMagic = WordToHost (noffH->noffMagic);
noffH->code.size = WordToHost (noffH->code.size);
noffH->code.virtualAddr = WordToHost (noffH->code.virtualAddr);
noffH->code.inFileAddr = WordToHost (noffH->code.inFileAddr);
noffH->initData.size = WordToHost (noffH->initData.size);
noffH->initData.virtualAddr = WordToHost (noffH->initData.virtualAddr);
noffH->initData.inFileAddr = WordToHost (noffH->initData.inFileAddr);
noffH->uninitData.size = WordToHost (noffH->uninitData.size);
noffH->uninitData.virtualAddr =
WordToHost (noffH->uninitData.virtualAddr);
noffH->uninitData.inFileAddr = WordToHost (noffH->uninitData.inFileAddr);
}
//----------------------------------------------------------------------
// AddrSpaceList
// List of all address spaces, for debugging
//----------------------------------------------------------------------
List AddrSpaceList;
//----------------------------------------------------------------------
// AddrSpace::AddrSpace
// Create an address space to run a user program.
// Load the program from a file "executable", and set everything
// up so that we can start executing user instructions.
//
// Assumes that the object code file is in NOFF format.
//
// First, set up the translation from program memory to physical
// memory. For now, this is really simple (1:1), since we are
// only uniprogramming, and we have a single unsegmented page table
//
// "executable" is the file containing the object code to load into memory
//----------------------------------------------------------------------
AddrSpace::AddrSpace (OpenFile * executable)
{
unsigned int i, size;
executable->ReadAt (&noffH, sizeof (noffH), 0);
if ((noffH.noffMagic != NOFFMAGIC) &&
(WordToHost (noffH.noffMagic) == NOFFMAGIC))
SwapHeader (&noffH);
/* Check that this is really a MIPS program */
ASSERT (noffH.noffMagic == NOFFMAGIC);
// how big is address space?
size = noffH.code.size + noffH.initData.size + noffH.uninitData.size + UserStacksAreaSize; // we need to increase the size
// to leave room for the stack
numPages = divRoundUp (size, PageSize);
size = numPages * PageSize;
// check we're not trying
// to run anything too big --
// at least until we have
// virtual memory
if (numPages > NumPhysPages)
throw std::bad_alloc();
DEBUG ('a', "Initializing address space, num pages %d, total size 0x%x\n",
numPages, size);
// first, set up the translation
pageTable = new TranslationEntry[numPages];
for (i = 0; i < numPages; i++)
{
pageTable[i].physicalPage = i; // for now, phys page # = virtual page #
pageTable[i].valid = TRUE;
pageTable[i].use = FALSE;
pageTable[i].dirty = FALSE;
pageTable[i].readOnly = FALSE; // if the code segment was entirely on
// a separate page, we could set its
// pages to be read-only
}
// then, copy in the code and data segments into memory
if (noffH.code.size > 0)
{
DEBUG ('a', "Initializing code segment, at 0x%x, size 0x%x\n",
noffH.code.virtualAddr, noffH.code.size);
executable->ReadAt (&(machine->mainMemory[noffH.code.virtualAddr]),
noffH.code.size, noffH.code.inFileAddr);
}
if (noffH.initData.size > 0)
{
DEBUG ('a', "Initializing data segment, at 0x%x, size 0x%x\n",
noffH.initData.virtualAddr, noffH.initData.size);
executable->ReadAt (&
(machine->mainMemory
[noffH.initData.virtualAddr]),
noffH.initData.size, noffH.initData.inFileAddr);
}
DEBUG ('a', "Area for stacks at 0x%x, size 0x%x\n",
size - UserStacksAreaSize, UserStacksAreaSize);
pageTable[0].valid = FALSE; // Catch NULL dereference
AddrSpaceList.Append(this);
}
//----------------------------------------------------------------------
// AddrSpace::~AddrSpace
// Dealloate an address space. Nothing for now!
//----------------------------------------------------------------------
AddrSpace::~AddrSpace ()
{
delete [] pageTable;
pageTable = NULL;
AddrSpaceList.Remove(this);
}
//----------------------------------------------------------------------
// AddrSpace::InitRegisters
// Set the initial values for the user-level register set.
//
// We write these directly into the "machine" registers, so
// that we can immediately jump to user code. Note that these
// will be saved/restored into the currentThread->userRegisters
// when this thread is context switched out.
//----------------------------------------------------------------------
void
AddrSpace::InitRegisters ()
{
int i;
for (i = 0; i < NumTotalRegs; i++)
machine->WriteRegister (i, 0);
// Initial program counter -- must be location of "Start"
machine->WriteRegister (PCReg, USER_START_ADDRESS);
// Need to also tell MIPS where next instruction is, because
// of branch delay possibility
machine->WriteRegister (NextPCReg, machine->ReadRegister(PCReg) + 4);
// Set the stack register to the end of the address space, where we
// allocated the stack; but subtract off a bit, to make sure we don't
// accidentally reference off the end!
machine->WriteRegister (StackReg, numPages * PageSize - 16);
DEBUG ('a', "Initializing stack register to 0x%x\n",
numPages * PageSize - 16);
}
//----------------------------------------------------------------------
// AddrSpace::Dump
// Dump program layout as SVG
//----------------------------------------------------------------------
static void
DrawArea(FILE *output, unsigned sections_x, unsigned virtual_x,
unsigned y, unsigned blocksize,
struct segment *segment, const char *name)
{
if (segment->size == 0)
return;
ASSERT((segment->virtualAddr % PageSize == 0));
ASSERT((segment->size % PageSize == 0));
unsigned page = segment->virtualAddr / PageSize;
unsigned end = (segment->virtualAddr + segment->size) / PageSize;
fprintf(output, "<rect x=\"%u\" y=\"%u\" width=\"%u\" height=\"%u\" "
"fill=\"#ffffff\" "
"stroke=\"#000000\" stroke-width=\"1\"/>\n",
sections_x, y - end * blocksize,
virtual_x - sections_x, (end - page) * blocksize);
fprintf(output, "<text x=\"%u\" y=\"%u\" fill=\"#000000\" font-size=\"%u\">%s</text>\n",
sections_x, y - page * blocksize, blocksize, name);
}
unsigned
AddrSpace::Dump(FILE *output, unsigned addr_x, unsigned sections_x, unsigned virtual_x, unsigned virtual_width,
unsigned physical_x, unsigned virtual_y, unsigned y,
unsigned blocksize)
{
unsigned ret = machine->DumpPageTable(output, pageTable, numPages,
addr_x, virtual_x, virtual_width, physical_x, virtual_y, y, blocksize);
DrawArea(output, sections_x, virtual_x, virtual_y, blocksize, &noffH.code, "code");
DrawArea(output, sections_x, virtual_x, virtual_y, blocksize, &noffH.initData, "data");
DrawArea(output, sections_x, virtual_x, virtual_y, blocksize, &noffH.uninitData, "bss");
DumpThreadsState(output, this, sections_x, virtual_x, virtual_y, blocksize);
return ret;
}
//----------------------------------------------------------------------
// AddrSpace::AddrSpacesRoom
// Return how much room is needed for showing address spaces
//----------------------------------------------------------------------
unsigned
AddrSpacesRoom(unsigned blocksize)
{
ListElement *element;
unsigned room = 0;
for (element = AddrSpaceList.FirstElement ();
element;
element = element->next) {
AddrSpace *space = (AddrSpace*) element->item;
room += machine->PageTableRoom(space->NumPages(), blocksize);
}
return room;
}
//----------------------------------------------------------------------
// AddrSpace::DumpAddrSpaces
// Dump all address spaces
//----------------------------------------------------------------------
void
DumpAddrSpaces(FILE *output,
unsigned addr_x, unsigned sections_x, unsigned virtual_x, unsigned virtual_width,
unsigned physical_x, unsigned y, unsigned blocksize)
{
ListElement *element;
unsigned virtual_y = y;
/* TODO: sort by physical page addresses to avoid too much mess */
for (element = AddrSpaceList.FirstElement ();
element;
element = element->next) {
AddrSpace *space = (AddrSpace*) element->item;
virtual_y -= space->Dump(output, addr_x, sections_x, virtual_x, virtual_width, physical_x, virtual_y, y, blocksize);
}
}
//----------------------------------------------------------------------
// AddrSpace::SaveState
// On a context switch, save any machine state, specific
// to this address space, that needs saving.
//
// For now, nothing!
//----------------------------------------------------------------------
void
AddrSpace::SaveState ()
{
}
//----------------------------------------------------------------------
// AddrSpace::RestoreState
// On a context switch, restore the machine state so that
// this address space can run.
//
// For now, tell the machine where to find the page table.
//----------------------------------------------------------------------
void
AddrSpace::RestoreState ()
{
machine->currentPageTable = pageTable;
machine->currentPageTableSize = numPages;
}